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In this article, we present the numerical computation of lower bounds of 
structured singular value known as the µ-value for a family of Chebyshev 
spectral differentiation matrices. The µ-value is a versatile tool used in 
control in order to analyze the robustness, performance, stability, and 
instability of feedback systems in system theory. The purposed methodology 
is based upon low-rank ordinary differential equations based technique and 
provides tight lower bounds of µ-value once compared with the well-known 
MATLAB routine mussv available in the MATLAB control toolbox. 
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1. Introduction 

* Structured Singular Value known as the µ-value 
defined by Packard and Doyle (1993) is a valuable 
tool available in system theory to analyses the 
robustness and performance of the uncertain control 
systems. The µ-value tool is applicable to investigate 
the stability analysis of control system with the help 
of the main loop theorem discussed in Packard and 
Doyle (1993). However, one need to do more 
analysis in order to deal with the complex 
robustness.  

The structures addressed by µ-value are generic 
in nature. In principle, these structures allows us 
covering all kinds of uncertainties, perturbations 
which can be included into the linear control 
systems with the help of both real and complex 
linear fractional transformations (LFT’s). For 
applications of structured singular values and its 
examples, interested readers can see Bernhardsson 
et al. (1998), Hinrichsen and Pritchard (2005), Chen 
et al. (1996), Zhou et al. (1996), Qiu et al. (1995), 
Karow (2011), and Karow et al. (2006)  and the 
references there in. 

Unfortunately, the computation of an exact value 
of structured singular value is not a trivial task and 
appears to be NP-hard problem, for more details, see 
Braatz et al. (1994). In case of pure real 
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perturbations, even approximating µ-value appears 
to be NP-hard. The matter of fact is that the 
computation of µ-value needs dependency upon the 
approximation of both µ-lower and µ-upper bounds.    

For the special case when only repeated 
parametric   perturbations are allows, in such 
scenario its much valuable to have lower bounds 
because the upper  bound could be conservative, 
especially when repeated parametric perturbations 
occurs. The widely used MATLAB routine, mussv, 
approximate an upper bound by means of the 
diagonal balancing technique, for further details, 
readers can consult Young et al. (1992) and a linear 
matrix inequalities (LMI) technique developed in 
Fan et al. (1991). The lower bound of µ-value is 
approximated by means of power method, the 
interested reader can consult Packard et al. (1988) 
and Young et al. (1994). The algorithm presented for 
this resembles a matrix of the power method for 
approximating the maximum eigenvalue and the 
maximum singular value of the given matrices. 

In this paper, we present numerical 
approximations to a lower bound of the µ-values of 
Chebyshev spectral differentiation matrices and we 
consider the fact that the underlying perturbations 
are associated with pure complex, mixed real and 
complex uncertainties. The proposed methodology 
to approximate the lower bounds of µ-value is based 
on two level algorithm, inner-outer algorithm 
(Rehman and Tabassum, 2017). 

In section 2, we emphasize our attention on the 
basic framework of proposed problem under 
consideration. It is describe that how the 
approximation of the µ-values can be addressed by 
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means of a two level algorithm that is an inner 
algorithm and an outer algorithm. In Section3 of this 
article, we introduce the inner algorithm for the case 
of pure complex uncertainties. The outer algorithm 
is mentioned in section 4. Finally in Section 5, we 
give the numerical experiments to compare lower 
bounds of µ-values for Chebyshev spectral 
differentiation matrices obtained with algorithm of 
Rehman and Tabassum (2017) to the one obtained 
with MATLAB function mussv. 

2. Framework 

Let 𝑀 ∈ 𝐶𝑛,𝑛(𝑅𝑛,𝑛), where 𝐶 denotes the complex 
matrices while 𝑅 denotes the family of the real 
matrices though out this article, and an underlying 
perturbation set with prescribed repeated real scalar 
block matrices and repeated complex scalars block 
matrices and the  full blocks along the major 
diagonal. 

 
𝐵 = {𝑑𝑖𝑎(𝛿𝑖𝐼𝑟𝑖 ; ∆𝑗): 𝛿𝑖 ∈ 𝐶(𝑅), ∆𝑗∈ 𝐶

𝑛,𝑛(𝑅𝑛,𝑛)}                (1) 

 
The following definition is given in Packard and 

Doyle (1993), where 𝐼 is the (𝑛, 𝑛) identity matrix. 
 

Definition 2.1. Let 𝑀 ∈ 𝐶𝑛,𝑛and consider the set of 
block diagonal matrices that is the set 𝐵 and let ∆∈ 𝐵 
is an admissible perturbation. Then, a structured 
singular value is denoted by 𝜇𝐵(𝑀) and is defined as 
follows: 

 

𝜇𝐵(𝑀) = {
0                𝑖𝑓            det(𝐼 − 𝑀∆) ≠ 0

(min{‖∆‖2 ∶ det(𝐼 − 𝑀∆) = 0})
−1 , 𝑒𝑙𝑠𝑒

          (2) 

 
For a general set 𝐵, the structured singular values 

become smaller and thus we have an upper bound. 
The important case, that is, when underlying 
perturbation set 𝐵 allows the pure complex 
perturbations, under such circumstances, we 
write𝐵∗instead of 𝐵. 

For ∆∈ 𝐵∗, it’s true to say that the 
perturbation 𝑒𝑖𝜃 ∈ 𝐵 for any value of 𝜃 ∈ 𝑅. Thus we 
choose ∆∈ 𝐵∗ such that the spectral radius achieves 
the maximum value to be one, that is, 𝜌(𝑀∆) = 1 
which is possible only if there is ∆̂∈ 𝐵∗, with the 

exactly same norm so that the matrix 𝑀∆̂ possesses 
an eigenvalue 𝜆 which attain the maximum value one 

and furthermore the matrix (𝐼 − 𝑀∆̂) is a singular 

matrix. This gives us following alternative definition 
of structured singular value as: 

 

𝜇𝐵(𝑀) = {
0                    𝑖𝑓                     ρ(𝑀∆) ≠ 0

(min{‖∆‖2 ∶ ρ(𝑀∆) = 0})
−1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (3) 

 
In Eq. 3, the quantity ρ(⋅) denotes the spectral 

radius of a matrix.  

Reformulation of definition of SSV 
The structured spectral value of 𝑀 ∈ 𝐶𝑛,𝑛 w.r.t to 

perturbation level,  𝜀 > 0 is defined as follows:  
 

Ʌ𝜀
𝐵 = {𝜆 ∈ Ʌ(𝜀𝑀∆): ∆∈ 𝐵, ‖∆‖2 ≤ 1}                   (4) 

 
where, the set Λ(∙)denotes the eigenvalues of the 
matrix. 

For pure complex uncertainties 𝐵∗, the Eq. 4 is 
simply a disk having its center at origin. Thus, the Eq. 
3 for pure complex uncertainties can be 
reformulated as:  

 

𝜇𝐵(𝑀) =
1

argmin{ max
λ∈Ʌ𝜀

𝐵∗(𝑀)
|𝜆|=1} 

                   (5) 

Overview of the proposed methodology 
We need to solve the maximization problem, 
 

𝜆(𝜀) = arg max
λ∈Ʌ𝜀

𝐵∗(𝑀)
 |𝜆|                    (6) 

 
For the fixed parameter 𝜀 > 0. From the above 

discussion, it’s very much that clear that the quantity 
𝜇𝐵∗(𝑀) is the reciprocal of minimum value of 𝜀 such 
that 𝜆(𝜀) = 1. In the inner algorithm, we intend to 
solve the problem addressed in Eq. 6. In the outer 
algorithm, we first vary 𝜀, the small parameter by 
using the fast Newton’s method which gives 
knowledge to compute the extremizers. We address 
Eq. 6 by solving a system of ordinary differential 
equations (ODEs). 

3. Computation of local extremizers 

In this section, we consider the solution of 
problem as mentioned in the Eq. 6 by making use of 
the inner algorithm. Now, we use the following 
standard eigenvalue perturbation result by Kato 
(1980). 

 
Lemma 3.1. Consider matrix family 𝐴: 𝑅 → 𝐶𝑛,𝑛 and 
consider that 𝜆(𝑡) be an eigenvalue of 𝐴(𝑡) for all 
time. The eigenvalue 𝜆(𝑡) which tends to converges 
the simple eigenvalue 𝜆0 = 𝜆(0) of 𝐴0 = 𝐴(0) as 𝑡 →
0.  Then 𝜆(𝑡) is analytic near 𝑡 = 0 with    

 
𝑑𝜆(𝑡)

𝑑𝑡
=
𝑋0
∗ 𝐴′(0)𝑋0

𝑋0
∗𝑋0

 , 𝑋0
∗𝑋0 ≠ 0 ,𝑋0

∗𝑋0 = 1   

 
where, 𝑋0

∗ and 𝑋∗ are the right and left eigenvectors 
of 𝐴0 = 𝐴(0) associated with simple eigenvalue 𝜆0 =
𝜆(0) that is (𝐴0 − 𝜆0𝐼0) and 𝑋0

∗(𝐴0 − 𝜆0𝐼) = 0. 
 

Definition 3.1.1. An admissible perturbation ∆∈ 𝐵∗ 
such that ‖∆‖2 ≤ 1 and the matrix (𝜀𝑀∆) for some 
fixed parameter 𝜀 > 0 has the largest eigenvalue 
𝜆𝑚𝑎𝑥 , which maximizes the modulus of the 

structured spectral value set Ʌ𝜀
𝐵∗(𝑀), is known as a 

local maximizer. 
 

Theorem 3.1.2. Let, 
∆̃= {𝑑𝑖𝑎(𝛿𝑖𝐼𝑟𝑖 ; ∆𝑗): 𝛿𝑖 ∈ 𝐶, ∆𝑗∈ 𝐶

𝑚𝑗,𝑚𝑗 , ∀𝑖 = 1: 𝑆, 𝑗 = 1:𝐹} 

                      (7) 

  

‖∆̃‖
2
= 1, is a local extremizer of Ʌ𝜀

𝐵∗(𝑀). The 

matrix (𝜀𝑀∆) possesses the simple eigenvalue 𝜆 =
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|𝜆|𝑒𝑖𝜃 , 𝜃 ∈ 𝑅, with 𝑥 and 𝑦 being the right 
eigenvector and the left eigenvector. These 
eigenvectors are scaled in such a way that 𝑠 =
𝑒𝑖𝜃𝑦∗𝑥 > 0. Next we partition 𝑥and 𝑦 according to 
both of their size and structure of ∆̃ to have,  

 
𝑥 = (𝑥1

𝑇 , … , 𝑥𝑆
𝑇 , 𝑥𝑆+1

𝑇 , … , 𝑥𝑆+𝐹
𝑇 )𝑇 , 𝑦 =

(𝑦1
𝑇 , … , 𝑦𝑆

𝑇 , 𝑦𝑆+1
𝑇 , … , 𝑦𝑆+𝐹

𝑇 )𝑇                    (8) 

 
Now considering that  
 

𝑧 = 𝑀∗𝑦 = (𝑧1
𝑇 , … , 𝑧𝑆

𝑇 , 𝑧𝑆+1
𝑇 , … , 𝑧𝑆+𝐹

𝑇 )𝑇  
 
we assume the non-degeneracy conditions that is,  

 
𝑧𝑘
∗𝑥𝑘 ≠ 0  , ∀ 𝑘 = 1: 𝑆                    (9) 
‖𝑧𝑆+ℎ‖2 ∙ ‖𝑥𝑆+ℎ‖2 ≠ 0∀ ℎ = 1: 𝐹                 (10) 

 
then this gives us,  

 
|𝛿𝑘| = 1, ∀ 𝑘 = 1: 𝑆 and ‖∆ℎ‖ = 1 , ∀ ℎ = 1: 𝐹. 

 
In the next theorem we replace full block 

matrices in an extremizer of the rank-1 matrices. 
 

Theorem 3.1.3.Consider that,  
 

∆̃= {diag(𝛿𝑖𝐼𝑟𝑖 ; ∆𝑗): 𝛿𝑖 ∈ 𝐶, ∆𝑗∈ 𝐶
𝑚𝑗,𝑚𝑗; ∀𝑖 = 1: 𝑆, 𝑗 = 1: 𝐹} 

 
with ‖∆̃‖

2
= 1 which is an extremizer of the 

structured spectral value set, that is, Ʌ𝜀
𝐵∗(𝑀). 

Consider λ, 𝑥, 𝑧 as given in Theorem 3.1.2. 
Furthermore, additionally assume that the non-
degeneracy of Eq. 10 holds and every block possess a 
singular value which attains the maximum value 
exactly equal to 1. Moreover, the matrix, ∆̌=

{diag(𝛿1𝐼𝑟1 , … , 𝛿𝑆𝐼𝑟𝑆; 𝑢1𝑣1
∗, … , 𝑢𝐹𝑣𝐹

∗)} acts as the local 

extremizer of the structured spectral value set. 
 

Remark 3.1.4. Theorem 3.1.3 helps us to consider 
the admissible perturbations that is the 
uncertainties in the spectral value set as given in Eq. 
4. By making use of the fact that both Frobenius 
norm and the matrix 2-norm of a rank-1 matrix 
appear to be same, this helps us to search for 
extremizers within the sub-manifold given as: 

 

𝐵1
∗ = {diag(𝛿𝑖𝐼𝑟𝑖 ; ∆𝑗): 𝛿𝑖 ∈ 𝐶; ∆𝑗∈ 𝐶

𝑚𝑗,𝑚𝑗 , ‖∆𝑗‖𝐹
= 1}      (11) 

 
3.1. System of ODEs to approximate extremal 

points of Ʌ𝜺
𝑩∗(𝑴) 

 
In order to approximate the local maximize for 

structured spectral vale set Ʌ𝜀
𝐵∗(𝑀), we aim to 

construct and then solve a matrix valued 
function ∆(𝑡). The matrix valued function ∆(𝑡) ∈ 𝐵1

∗is 
so that the maximum value of the absolute value of 

an eigenvalue 𝜆 ∈ Ʌ𝜀
𝐵∗(𝑀) of the matrix valued 

function (𝜀𝑀∆(𝑡)) achieves the maximum growth. 

Our next aim is to derive a gradient system of ODE’s 

which satisfies the choice of the initial matrix 
admissible perturbation ∆(𝑡). 

 
3.2. The orthogonal projection onto 𝑩∗ 

 
Lemma 3.2.1.  For 𝐶 ∈ 𝐶𝑛,𝑛, consider the product,  

 
𝐶 ⊗ 𝐼𝑑 = diag(𝐶1, … , 𝐶𝑆; 𝐶𝑆+1, … , 𝐶𝑆+𝐹)                (12)

  
which shows that the block diagonal matrix is 
obtained by the entry wise multiplication of the 

matrix C with the pattern matrix 𝐼𝐵∗. The pattern 
matrix is defined as below:  
 
𝐼𝐵∗ = diag(𝐼𝑟1, … , 𝐼𝑟𝑆; 𝐼𝑚1

, … , 𝐼𝑚𝐹
), 

  

where 𝐼𝑑 = (
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

) is 𝑑 × 𝑑 −matrix of all ones. 

The orthogonal projection of the matrix 𝐶 onto 
the family 𝐵∗ is obtained as:  

 
𝐶𝐵∗ = 𝑃𝐵∗(𝐶) = diag(𝛾1𝐼𝑟1 , … , 𝛾𝑆𝐼𝑟𝑆; 𝛤1, … , 𝛤𝐹),                (13) 

 

where, 𝛾𝑖 =
𝑡𝑟𝑎𝑐𝑒(𝐶𝑖)

𝑟𝑖
, ∀ 𝑖 = 1: 𝑆 and 𝛤1 = 𝐶𝑆+1, … , 𝛤𝐹 =

𝐶𝑆+𝐹 . 
 

3.3. The optimization problem 
 
We consider the fact that 𝜆 = |𝜆|𝑒𝑖𝜃 acts the 

simple and the largest eigenvalue with the 
corresponding right and left eigenvectors 𝑥, 𝑦 
respectively and are normalized so that, 

 
‖𝑥‖ = ‖𝑦‖ = 1, 𝑦∗𝑥 = |𝑦∗𝑥|𝑒−𝑖𝜃 .                 (14) 

 
From the result of the above Lemma 3.2.1, we get 

the following expression for the change in the largest 
eigenvalue as: 

  
𝑑

𝑑𝑡
|𝜆(𝑡)|2|

𝑡=0
= 2

|𝜆|

|𝑦∗𝑥|
𝑅𝑒(𝑧∗∆̇ 𝑥);  𝑧 = 𝑀∗𝑦                        (15) 

 
The eigenvectors 𝑥 and 𝑦 are defined and 

normalized as in the Theorem 3.1.2. Now, by 
considering the suitable perturbation ∆∈ 𝐵1

∗ with 𝐵1
∗ 

in Eq. 11. We search the direction 𝑍 that maximizes 
the growth of the modulus of the largest 
eigenvalue 𝜆. For this we need to determine the 
direction 𝑍 as given in the Eq. 16: 

 
𝑍 = {diag(𝑤1𝐼𝑟1 , … , 𝑤𝑆𝐼𝑟𝑆; Ω1, … , ΩF)}                 (16) 

 
which solves the following optimization problem: 
 
𝑧 = max{𝑅𝑒(𝑧∗𝑍 𝑥) } subject to  
𝑅𝑒(𝛿𝑖̅𝑤𝑖) = 0 , ∀ 𝑖 = 1: 𝑆, 𝑅𝑒(∆𝑗 , Ωj) = 0 , ∀ 𝑗 = 1: 𝐹       (17) 

 

The linear constraints in the maximization 
problem as in Eq. 17 ensure the fact that 𝑍 lies in the 
tangent space of the manifold 𝐵1

∗at ∆(𝑡). In 
particular, Eq. 17 ensures that the matrix norm of 
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each block of the admissible perturbation ∆(𝑡) 
remain conserved. 

 
Lemma 3.3.1. The solution of the maximization 
problem as discussed in Eq. 17 is given by  
 
𝑍∗ = {diag(𝑤1𝐼𝑟1 , … , 𝑤𝑆𝐼𝑟𝑆; Ω1, … , ΩF)} 

 

with, 
 

 𝑤𝑖 = 𝑣𝑖(𝑥𝑖
∗𝑧𝑖 − 𝑅𝑒(𝑥𝑖

∗𝑧𝑖𝛿𝑖̅)𝛿𝑖), ∀ 𝑗 = 1: 𝑆 and 

Ωj = 𝜉𝑗(𝑧𝑆+𝑗𝑥𝑆+𝑗
∗ − 𝑅𝑒(∆𝑗 , 𝑧𝑆+𝑗 𝑥𝑆+𝑗

∗ )∆𝑗) , ∀ 𝑗 = 1:𝐹. 

 
The quantity 𝑣𝑖 > 0 is obtained in the first 

equation is nothing but the reciprocal of the absolute 
value of the quantity appearing on the right-hand 
side of the expression for 𝑤𝑖 , if this is other than 
zero, while this quantity appears to be one, that 
is, 𝑣𝑖 = 1, otherwise. In a similar way the quantity 
𝜉𝑗 > 0 appear as the reciprocal of the Frobenius 

norm of the quantity appearing on the right-hand 
side of the expression for Ωj in the second equation, 

if it appear other than zero, while it appears to be 
equal to one, that is, 𝜉𝑗 = 1. Also note the fact that if 

the quantity appearing on the right-hand sides are 
other than zero, then 𝑍 ∈ 𝐵1

∗. 
 

Corollary 3.3.2. The result of the previous Lemma 
3.3.1 can be written as follows: 
 
Z∗ = 𝐷1𝑃𝐵∗(𝑧𝑥

∗) − 𝐷2∆                  (18) 

 
In above Eq. 18, the quantity 𝑃𝐵∗(∙) acts as the 

orthogonal projection to the manifold of the pattern 
matrices. Also, 𝐷1, 𝐷2 ∈ 𝐵

∗ are the orthogonal 
matrices with 𝐷1 appear as to be positive matrix. 

 
3.4. Gradient system of ordinary differential 
equations 

 
Lemma 3.3.1 and Corollary 3.3.2 suggests us to 

focus on following differential equations on the 
manifold of rank-1 matrices 𝐵1

∗. 
 

∆̇= 𝐷1𝑃𝐵∗(𝑧𝑥
∗) − 𝐷2∆                  (19) 

 
The vector 𝑥(𝑡) acts as an eigenvector which is 

associated to a simple and largest eigenvalue 𝜆(𝑡) of 

the matrix valued function (𝜀𝑀∆(𝑡)) for some fixed 

parameter 𝜀 > 0. Also, consider the fact that the 
quantities 𝑧(𝑡), 𝐷1 and 𝐷2 depends on the choice of 
the matrix valued function that is ∆(𝑡). The obtained 
differential Eq. 19 represents a gradient system of 
ODE’s due to fact that right-hand side is nothing but 
is the projected gradient of 𝑍 → 𝑅𝑒(𝑧∗𝑍𝑥). 

 
3.5. Choice of initial value matrix ∆𝟎 and 𝜺𝟎 

 
In our two level algorithm for the approximation 

of the perturbation level 𝜀, we make use of the 
admissible perturbation, ∆ which is obtained for the 

previous value of perturbation level 𝜀 as the initial 
value matrix for the system of ODE’s as in Eq. 19.  

Consider that the given matrix 𝑀 is invertible and 
we consider the fact that the matrix 𝑀 can be 
expressed as  𝐼 − 𝜀0𝑀∆0= 𝑀(𝑀

−1 − 𝜀0∆0). To 
compute the initial choice of the admissible 
perturbation ∆0, we perform an asymptotic analysis 
around 𝜀0 ≈ 0. In order to achieve this we consider 
that the very suitable choice of the matrix valued 
function 𝐺(𝜏) = 𝑀−1 − 𝜏∆0, and also consider that 
𝜂(𝜏) being as eigenvalue of the matrix valued 
function 𝐺(𝜏) which possesses the smallest modulus. 
Finally by considering that 𝑥, 𝑦 represents both right 
eigenvector and left eigenvector to the initial choice 
of 𝜂(0) = 𝜂0 = |𝜂0|𝑒

𝑖𝜃 , scaled such that 𝑒𝑖𝜃𝑦∗𝑥 > 0, 
From Lemma 3.1, we get 

 
𝑑

𝑑𝑡
|𝜆(𝑡)|2|

𝑡=0
= 2𝑅𝑒(𝜂̅ 𝜂̇) = −2𝑅𝑒 (𝜂̅

𝑦∗∆0𝑥

𝑦∗𝑥
)  

= −2|𝜂0|𝑅𝑒 (
𝑦∗∆0𝑥

𝑒𝑖𝜃𝑦∗𝑥
) = −2

|𝜂|

|𝑦∗𝑥|
𝑅𝑒(𝑦𝑥∗, ∆0).  

 
To achieve local maximal decline of the function 

|𝜂(𝜏)|2 as 𝜏 = 0, take the initial perturbation as:  
 

∆0= 𝐷𝑃𝐵(𝑦𝑥
∗)                   (20) 

 
In Eq. 20, the matrix 𝐷 appear as a diagonal and 

positive definite matrix and the initial admissible 
perturbation, uncertainty ∆0∈ 𝐵1

∗. On the other hand 
a very natural choice of the 𝜀0 is given by as below: 

 

𝜀0 =
1

𝜇𝐵
𝑢𝑝𝑝𝑒𝑟                   (21) 

 
The quantity 𝜇𝐵

𝑢𝑝𝑝𝑒𝑟
is the upper bound for 

structured singular values which are approximated 
by the MATLAB routine mussv. 

 
4. Outer algorithm 

 
In the following, we consider that 𝜆(𝜀) represents 

the maximizers by approximating the stationary 
points against the gradient system of ODE’s in Eq. 19.  

For making use of fast Newton’s method for 
solution of the equation |𝜆(𝜀)| = 1 we approximate 
the derivative of the equation|𝜆(𝜀)| − 1 = 0 w.r.t 
perturbation level 𝜀.  

 
Assumption 4.1. For the computation of a local 
extremizer, that is, a matrix valued function ∆(𝜀) of  
the structured epsilon spectral value set, that is, 

Ʌ𝜀∗ 
𝐵∗(𝑀) , with the absolute value of the maximum 

eigenvalue 𝜆(𝜀), we consider that 𝜆(𝜀) is the simple 
eigenvalue while ∆(∙) and 𝜆(∙) appear to be smooth 
in neighborhood of 𝜀. 

The computation of the derivative of |𝜆(𝜀)| is 
addressed in the following theorem 4.1.1. 

 
Theorem 4.1.1. Consider the situation under which 
the Assumption 4.1 holds true for the matrix valued 
function ∆(𝜀) ∈ 𝐵1

∗ and 𝜆(𝜀). Consider 𝑥(𝜀) is the 
right eigenvector while 𝑦(𝜀) is the left eigenvector 
corresponding to the matrix valued 
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function(𝜀𝑀∆(𝜀)), we scaled these eigenvectors 

as 𝑠 = 𝑒𝑖𝜃𝑦∗𝑥 > 0. Consider the partitions of both 
𝑥(𝜀) and 𝑧(𝜀) as done previously. Then, 

 
𝑑

𝑑𝑡
|𝜆(𝜀)| 

=
1

|𝑦∗(𝜀)𝑥(𝜀)|
[∑ |𝑧𝑖(𝜀) 𝑥𝑖(𝜀)|
𝑆
𝑖=1 + ∑ ‖𝑧𝑆+𝑗(𝜀)‖ ∙

𝐹
𝑗=1

‖𝑦𝑆+𝑗(𝜀)‖] > 0                         (22) 

 
Theorem 4.1.1 allows us to easily realize the fast 

Newton’s method 
 

𝜀(𝑘+1) = 𝜀(𝑘) +
|𝜆(𝑘)|−1

𝑑|𝜆(𝑘)|
,                 (23) 

 

in Eq. 23, the quantities 𝜆(𝑘) = 𝜆(𝜀(𝑘)), and 𝑑|𝜆(𝑘)| is 

the derivative of the |𝜆(𝜀)| at 𝜀 = 𝜀(𝑘). 

5. Numerical experimentation 

In the last section of this article, we present 
various numerical experimentations for pure and the 
admissible both mixed real and complex 
perturbations, uncertainties. The comparisons of 
lower bounds of µ-values for a family of Chebyshev 
spectral differentiation matrices is presented. 

 
Example 1: Consider a three dimensional Chebyshev 
spectral differentiation matrix given as, 

 

𝑀 = (
1.5000 −2.0000 0.5000
0.5000 0.0000 −0.5000
0.5000 2.0000 −1.5000

) 

 
also, consider the set of block diagonal uncertainties 
as an input argument. The uncertainty set is taken 
as: 

 
𝐵 = {diag(∆1): ∆1∈ 𝐶

3,3}. 
 
Making use of MATLAB function mussv, we obtain 

an admissible perturbation set ∆̂, which is given 
below as: 

 

∆̂ = (
0.0833 −0.0000 −0.0833
−0.1667 0.0000 0.1667
0.0833 −0.0000 −0.0833

) 

 
The 2-norm of admissible perturbation is 

obtained as 0.2887 while the lower bound of 
structured singular value is obtained as 𝜇𝑃𝐷

𝑙 =
3.4641 and an upper bound 𝜇𝑃𝐷

𝑢 = 3.4641Applying 
the algorithm presented in Rehman and Tabassum 
(2017), we obtain the admissible uncertainty 𝜀∆̆ 

with 𝜀 = 1.8289𝑒 + 005 and ∆̆, the structured 
perturbation obtained as,  

 

∆̆ = 

(
0.1179 + 0.2041𝑖 0.1178 + 0.2041𝑖 0.1178 + 0.2041𝑖
−0.2357− 0.4083 −0.2357 − 0.4083 −0.2357 − 0.4083
0.1179 + 0.2041𝑖 0.1178 + 0.2041𝑖 0.1178 + 0.2041𝑖

)  

 
In this case the admissible uncertainty has a unit 

2-norm while the obtained lower bound of 

structured singular value is 𝜇𝑃𝐷
𝑙(𝑛𝑒𝑤)(𝑀) = 5.4677𝑒 −

0.006. 
In Table 1, we give the comparison of lower 

bounds of structured singular values for 3-
dimensional Chebyshev spectral differentiation 
matrices. 

 
Example 2: Consider the following four dimensional 
real Chebyshev spectral differentiation matrix.  

 

𝑀 = (

3.1667 −4.0000 1.3333 −0.5000
1.0000 −0.3333 −1.0000 0.3333
−0.3333 1.0000 0.3333 −1.0000
0.5000 −1.3333 4.0000 3.1667

) 

 
Also, consider the set of block diagonal 

uncertainties as an input argument. The uncertainty 
set is taken as: 

 
𝐵 = {diag(∆1): ∆1∈ 𝐶

4,4}. 

 
Making use of MATLAB function mussv, we obtain 

an admissible perturbation set ∆̂, which is given 
below as:  

 

∆̂= (

0.0435 −0.0012 −0.0012 0.0435
−0.0638 0.0017 0.0017 −0.0638
0.0638 −0.0017 −0.0017 0.0638
−0.0435 0.0012 0.0012 −0.0435

) 

 
The 2-norm of admissible perturbation is 

obtained as 0.1545 while the lower bound of 
structured singular value is obtained as 𝜇𝑃𝐷

𝑙 =
6.4745 and an upper bound 𝜇𝑃𝐷

𝑢 = 6.4745. Applying 
the algorithm presented in Rehman and Tabassum 
(2017), we obtain the admissible uncertainty 𝜀∆̆ 

with 𝜀 = 0.1545 and ∆̆ with 
 

∆̆= (

0.2816 −0.0076 −0.0076 0.2816
−0.4130 0.0112 0.0112 −0.4130
0.4130 −0.0112 −0.0112 0.4130
−0.2816 0.0076 0.0076 −0.2816

) 

 
In this case the admissible uncertainty has a unit 

2-norm while the obtained lower bound of 

structured singular value is 𝜇𝑃𝐷
𝑙(𝑛𝑒𝑤)(𝑀) = 6.4745. 

In Table 2, we give the comparison of lower 
bounds of structured singular values for 4-
dimensional Chebyshev spectral differentiation 
matrices. 

 
Table 1: Computation of lower bounds of structured singular values for 3-dimensional Chebyshev 

𝑛 𝐵 𝜇𝑃𝐷
𝑢  𝜇𝑃𝐷

𝑙  𝜇𝑃𝐷
𝑙(𝑛𝑒𝑤) 

3 {diag(𝛿1𝐼3): 𝛿1 ∈ 𝑅} 1.0𝑒 − 005 ∗ 0.6479 0 5.4677𝑒 − 006 
3 {diag(𝛿𝑖𝐼1): 𝛿𝑖 ∈ 𝑅, ∀𝑖 = 1: 3} 2.2361 2.0000 2.220 
3 {diag(𝛿𝑖𝐼1): 𝛿𝑖 ∈ 𝐶, ∀𝑖 = 1: 3} 2.2361 2.0000 2.2356 
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Table 2: Computation of lower bounds of structured singular values for 4-dimensional Chebyshev 
𝑛 𝐵 𝜇𝑃𝐷

𝑢  𝜇𝑃𝐷
𝑙  𝜇𝑃𝐷

𝑙(𝑛𝑒𝑤) 

4 {diag(𝛿1𝐼2, 𝛿2𝐼2): 𝛿1, 𝛿2 ∈ 𝐶} 2.5982 2.4496 2.4496 
4 {diag(𝛿1𝐼2, 𝛿2𝐼2): 𝛿1, 𝛿2 ∈ 𝑅} 1.4274 0.0000 1.3334 
4 {diag(𝛿1𝐼2, 𝛿2𝐼2): 𝛿1 ∈ 𝑅, 𝛿2 ∈ 𝐶} 2.0502 2.0502 2.0502 
4 {diag(𝛿1𝐼1, ∆1): 𝛿1 ∈ 𝐶, ∆1∈ 𝐶

3,3} 5.7912 5.7668 5.7868 
4 {diag(𝛿𝑖𝐼1): 𝛿𝑖 ∈ 𝑅, ∀𝑖 = 1: 4} 4.2777 4.2766 4.2776 
     

Example 3: Consider the following five dimensional 
real Chebyshev spectral differentiation matrix. 

 

𝑀 =

(

 
 

5.5000 −6.8284 2.0000 −1.1716 0.5000
1.7071 −0.7071 −1.4141 0.7071 −0.2929
−0.5000 1.4142 −0.0000 −1.4142 0.5000
0.2929 −0.7071 1.4142 0.7071 −1.7071
−0.5000 1.1716 −2.0000 6.8284 −5.5000)

 
 

 

 
Also, consider the set of block diagonal 

uncertainties as an input argument. The uncertainty 
set is taken as: 

 
𝐵 = {diag(∆1): ∆1∈ 𝐶

5,5}. 

 
Making use of MATLAB function mussv, we obtain 

an admissible perturbation set ∆̂, which is given 
below as:  

 

∆̂=

(

 
 

0.0279 0.0008 0.0000 −0.0008 −0.0279
−0.0370 −0.0010 −0.0000 0.0010 0.0370
0.0181 0.0005 0.0000 −0.0005 −0.0181
−0.0370 −0.0010 −0.0000 0.0010 0.0370
0.0279 0.0008 0.0000 −0.0008 −0.0279)

 
 

 

 
The 2-norm of admissible perturbation is 

obtained as 0.0962 while the lower bound of 
structured singular value is obtained as 𝜇𝑃𝐷

𝑙 =
10.3961 and an upper bound 𝜇𝑃𝐷

𝑢 = 10.3961. 
Applying the algorithm presented in Rehman and 

Tabassum (2017), we obtain the admissible 
uncertainty 𝜀∆̆ with 𝜀 = 0.0962 and ∆̆ with 

 

∆̆=

(

 
 

0.2902 0.0080 0.0000 −0.0080 −0.2902
−0.3845 −0.0107 −0.0000 0.0107 0.3845
0.1885 0.0052 0.0000 −0.0052 0.1885
−0.3845 −0.0107 −0.0000 0.0107 0.3845
0.2902 0.0080 0.0000 −0.0080 −0.2902)

 
 

 

 
In this case the admissible uncertainty has a unit 

2-norm while the obtained lower bound of 

structured singular value is 𝜇𝑃𝐷
𝑙(𝑛𝑒𝑤)(𝑀) = 10.3961. 

In Table 3, we give the comparison of lower 
bounds of structured singular values for 5-
dimensional Chebyshev spectral differentiation 
matrices. 

 
Example 4: Consider the following six dimensional 
real Chebyshev spectral differentiation matrix. 

 
𝑀

=

(

  
 

8.5000 −10.4721 2.8944 −1.5279 1.1056 −0.5000

2.6180 −1.1708 −2.0000 0.8944 −0.6180 0.2764

−0.7236 2.0000 −0.1708 −1.6180 0.8944 −0.3820

0.3820 −0.8944 1.6180 0.1708 −2.0000 0.7236

−0.2764 0.6180 −0.8944 2.0000 1.1708 −2.6180

0.5000 −1.1056 −1.5279 −2.8944 10.4721 −8.5000)

  
 

 

 
Also, consider the set of block diagonal 

uncertainties as an input argument. The uncertainty 
set is taken as: 

 
𝐵 = {diag(∆1): ∆1∈ 𝐶

6,6}. 

 
Making use of MATLAB function mussv, we obtain 

an admissible perturbation set ∆̂, which is given 
below as:  

 
∆̂

=

(

  
 

0.0193 0.0013 −0.008 −0.008 0.0013 0.0193

−0.0246 −0.0017 0.0010 0.0010 −0.0017 −0.0246

0.0088 0.0006 −0.0004 −0.0004 0.0006 0.0088

−0.0088 −0.0006 0.0004 0.0004 −0.0006 −0.0088

0.0246 0.0017 −0.0010 0.0010 0.0017 0.0246

−0.0193 −0.0013 0.008 0.008 −0.0013 −0.0193)

  
 

 

 
The 2-norm of admissible perturbation is 

obtained as 0.0651 while the lower bound of 
structured singular value is obtained as 𝜇𝑃𝐷

𝑙 =
15.3619 and an upper bound 𝜇𝑃𝐷

𝑙 = 15.3619. 
Applying the algorithm presented in Rehman and 

Tabassum (2017), we obtain the admissible 
uncertainty 𝜀∆̆ with 𝜀 = 0.0651 and ∆̆ with,  

 

∆̆=

(

  
 

0.2965 0.0198 −0.0108 −0.0108 0.0198 0.2965
−0.3767 −0.0252 0.0137 0.0137 −0.0252 −0.3767
0.1369 0.0091 −0.0050 −0.0050 0.0091 0.1369
−0.1369 −0.0091 0.0050 0.0050 −0.0091 −0.1369
0.3767 0.0252 −0.0137 −0.0137 0.0252 0.3767
−0.2965 −0.0198 0.0108 0.0108 −0.0198 −0.2965)

  
 

+

(

  
 

0.0014𝑖 −0.0015𝑖 −0.0004𝑖 −0.0004𝑖 −0.0015𝑖 0.0014𝑖
0.0002𝑖 0.0021𝑖 0.0005𝑖 0.0005𝑖 0.0021𝑖 0.0002𝑖
−0.0019𝑖 −0.0009𝑖 −0.0001𝑖 −0.0001𝑖 −0.0009𝑖 −0.0019𝑖
0.0019𝑖 0.0009𝑖 0.0001𝑖 0.0001𝑖 0.0009𝑖 0.0019𝑖
−0.0002𝑖 −0.0021𝑖 −0.0005𝑖 −0.0005𝑖 −0.0021𝑖 −0.0002𝑖
−0.0014𝑖 0.0015𝑖 0.0004𝑖 0.0004𝑖 0.0015𝑖 0.0014𝑖 )

  
 

 

 

In this case the admissible uncertainty has a unit 
2-norm while the obtained lower bound of 

structured singular value is 𝜇𝑃𝐷
𝑙(𝑛𝑒𝑤)(𝑀) = 15.3612. 

In Table 4, we give the comparison of lower 
bounds of structured singular values for 6-

dimensional Chebyshev spectral differentiation 
matrices.  

In the Figs. 1-8, we present graphical 
interpretation of the bounds of µ-value obtained by 
our algorithm with the one obtained by MATLAB 
function mussv. 
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Table 3: Computation of lower bounds of structured singular values for 5-dimensional Chebyshev 

𝑛 𝐵 𝜇𝑃𝐷
𝑢  𝜇𝑃𝐷

𝑙  𝜇𝑃𝐷
𝑙(𝑛𝑒𝑤) 

5 {diag(𝛿𝑖𝐼1): 𝛿𝑖 ∈ 𝑅,∀𝑖 = 1: 5} 7.5331 7.5071 7.5330 
5 {diag(𝛿𝑖𝐼1): 𝛿𝑖 ∈ 𝐶, ∀𝑖 = 1: 5} 7.5332 7.5071 7.5330 
5 {diag(𝛿1𝐼1, ∆1, ∆2): 𝛿1 ∈ 𝐶, ∆1, ∆2∈ 𝐶

2,2} 9.3676 9.3665 9.3676 
5 {diag(𝛿1𝐼2, ∆1): 𝛿1 ∈ 𝑅, ∆1, ∆2∈ 𝐶

3,3} 9.4191 9.3859 9.3859 

 
Table 4: Computation of lower bounds of structured singular values for 6-dimensional Chebyshev 

𝑛 𝐵 𝜇𝑃𝐷
𝑢  𝜇𝑃𝐷

𝑙  𝜇𝑃𝐷
𝑙(𝑛𝑒𝑤) 

6 {diag(𝛿𝑖𝐼1): 𝛿𝑖 ∈ 𝑅, ∀𝑖 = 1: 6} 11.5313 11.5294 11.5293 
6 {diag(𝛿𝑖𝐼1): 𝛿𝑖 ∈ 𝐶, ∀𝑖 = 1: 6} 11.5313 11.5294 11.5313 
6 {diag(𝛿1𝐼1, 𝛿2𝐼1): 𝛿1, 𝛿2 ∈ 𝐶, ∆1, ∆2∈ 𝐶

2,2} 14.3416 14.2705 14.2831 
6 {diag(𝛿1𝐼3, ∆1): 𝛿1 ∈ 𝑅, ∆1∈ 𝐶

3,3} 14.3492 14.3076 14.3076 
6 {diag(𝛿1𝐼2, 𝛿𝑖𝐼1): 𝛿1 ∈ 𝑅, 𝛿𝑖 ∈ 𝑅, ∀𝑖 = 3: 6} 11.4021 11.3538 11.4021 
     

 
Fig. 1: The comparison of lower bounds of structured 

singular values for the frequency Ω =1:6 for a 6 
dimensional Chebyshev spectral differentiation matrix 

 

 
Fig. 2: The comparison of lower bounds of structured 

singular values for the frequency Ω =1:4 for a 4-
dimensioanlchebyshev spectral differentiation matrix 

 

 
Fig. 3: The comparison of lower bounds of structured 
singular values for the frequency Ω =1:4 of Chebyshev 

spectral differentiation matrix of dimension 4 

 
Fig. 4: The comparison of lower bounds of structured 
singular values for the frequency Ω =1:4 of Chebyshev 

spectral differentiation matrix of the dimension 4 
 

 
Fig. 5: The comparison of lower bounds of structured 

singular values for the frequency Ω =1:4 of a 4 dimensional 
Chebyshev spectral differentiation matrix 

 

 
Fig. 6: The comparison of lower bounds of structured 

singular values for the frequency Ω =1:4 of a 4 dimensional 
Chebyshev spectral differentiation matrix. 
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Fig. 7: The comparison of lower bounds of structured 

singular values for the frequency Ω =1:4 for a 4 
dimensional Chebyshev spectral differentiation matrix 

 

 
Fig. 8: The comparison of lower bounds of structured 

singular values for the frequency Ω =1:4 for a 4 
dimensional Chebyshev spectral differentiation matrix 

6. Conclusion 

In this article, we have considered the problem 
for the computation of the lower bounds of µ-values 
for a family of Chebyshev spectral differentiation 
matrices. The numerical computation of µ-values 
gives an important role in stability analysis of linear 
systems in the system theory.  

The numerical experimentation show that the 
comparison of the lower bounds of µ-values 
computed by algorithm mentioned in this article 
when compared to well-known MATLAB control 
toolbox. 

 

 

List of symbols 

B   Family of block diagonal matrices    
ɛ0   Perturbation level 
Δ0  Initial admissible perturbation 
µ  Structured singular values. 
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